

SSC65TR10GT4

Trench FSII Fast IGBT

> Features

Description

High ruggedness performance

High efficiency for motor control

10µs short circuit capability

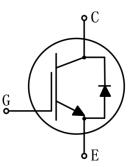
 \triangleright

•

•

•

V _{CES}	V _{GES}	lc
650V	±20V	20A@25°C
030 V	1200	10A@100°C


Positive VCE (sat) temperature coefficient

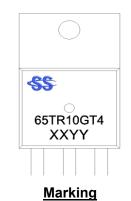
Excellent current sharing in parallel operation

> Pin Configuration

TO-220 (Top View)

Applications

• Home appliances


RoHS compliant

Motor drives

> Ordering Information

Device	Package	Shipping	
SSC65TR10GT4	TO-220-3L	50/Tube	

Pin Configuration

(XXYY: Internal Traceability Code)

1 / 9

> Absolute Maximum Ratings (T_{vj}=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit	
Vces	Collector-Emitter Voltag	ge	650	V
Vges	Gate-Emitter Voltage		±20	V
	Collector Current	Tc=25°C	20	•
lc		Tc=100°C	10	A
ICpuls	Pulsed Collector Current, t _P limited by T _{vJmax}		40	А
D	Power Dissipation ^a $T_{c}=25^{\circ}C$ $T_{c}=100^{\circ}C$	115	14/	
PD		T _C =100°C	57	W
Tvj	Operating Junction and Storage Tem	-40~175	°C	
Tstg	Operating Junction and Storage Temperature Range		-55~150	°C
t _{sc}	Short circuit withstand time		10	us

> Thermal Resistance Ratings

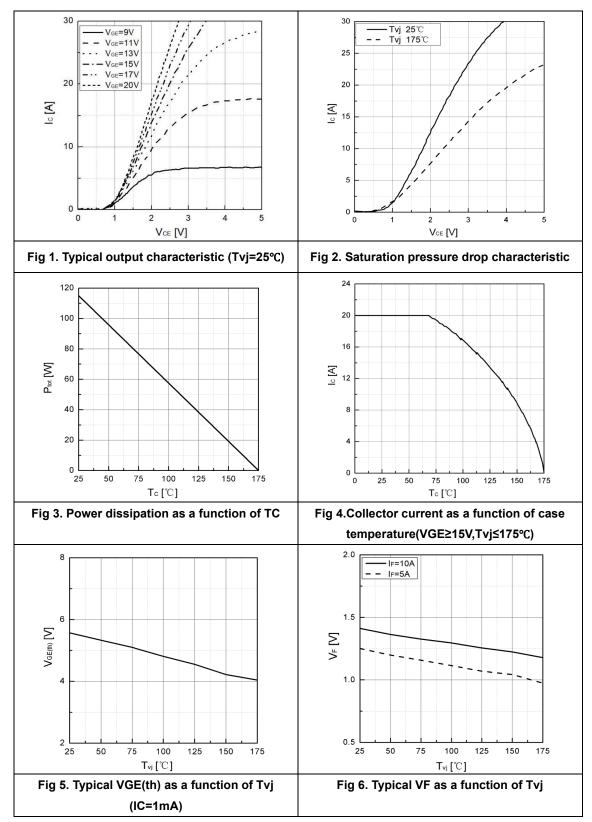
Symbol	Parameter	Тур	Max	Unit
R _{0JA}	Junction-to-Ambient Thermal Resistance		50	
R _{ejc}	Hermal Resistance, Junction to Case for IGBT		1.3	°C/W
R _{ejc}	R _{0JC} Thermal Resistance, Junction to Case for Diode		1.8	

Note:

a. The maximum current rating is package limited

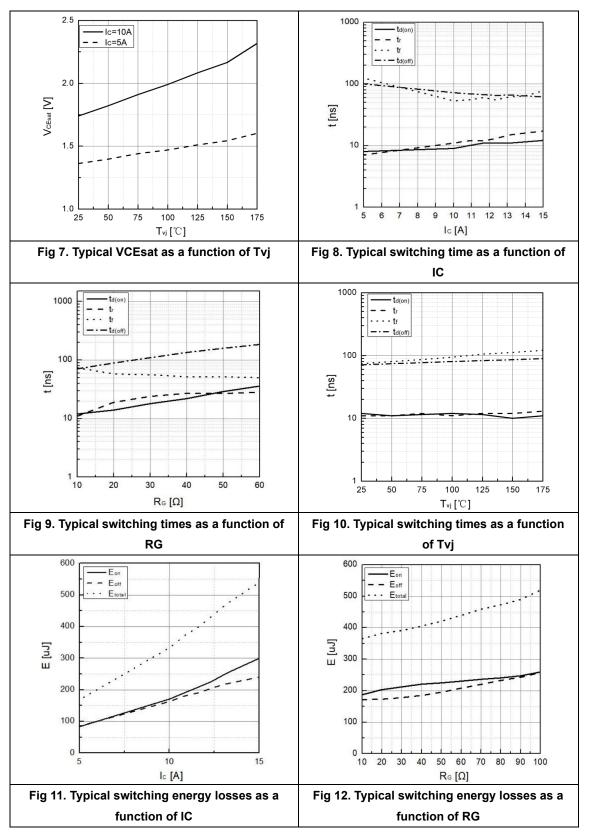
> Electrical Characteristics of IGBT (T_{vj}=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{(BR)CES}$	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V$, $I_C = 0.25mA$	650			V
ICES	Collector-Emitter Leakage Current	V _{GE} =0V, V _{CE} =650V, Tvj=25°C			50	uA
$I_{\text{GES}(\text{F})}$	Gate to Emitter Forward Leakage	V_{GE} = +20V, V_{CE} = 0V			100	nA
I _{GES(R)}	Gate to Emitter Reverse Leakage	V_{GE} = -20V, V_{CE} = 0V			-100	nA
V _{CE(sat)}	Collector-Emitter Saturation	I_{C} =10A, V_{GE} =15V, T_{vj} =25°C		1.8		V
v CE(sat)	Voltage	I _C =10A, V _{GE} =15V, T _{vj} =175°C		2.1		V
$V_{\text{GE}(\text{th})}$	Gate Threshold Voltage	I_C = 250uA, V_{CE} = V_{GE}	5.5	5.8	6.2	V
Cies	Input Capacitance			670		
Coes	Output Capacitance	$V_{CE} = 30V, V_{GE} = 0V,$		37		pF
Cres	Reverse Transfer Capacitance	f = 1MHz		10		
T _{D(ON)}	Turn-on delay time			12		
Tr	Rise time			11]
$T_{D(OFF)}$	Turn-off delay time	T _{vj} =25°C, V _{CC} =400V, I _C =10A,		71		ns
Tf	Fall time	V_{GE} =0/15V, R _g =10 Ω ,		74		
Eon	Turn-On Switching Loss	Inductive Load		0.18		
E _{off}	Turn-Off Switching Loss			0.17		mJ
Ets	Total Switching Loss			0.35]
T _{D(ON)}	Turn-on delay time			11		
Tr	Rise time	T _{vi} =175°C, V _{CC} =400V,		13]
T _{D(OFF)}	Turn-off delay time	Ic=10A,		89		ns
T _f	Fall time	V _{GE} =0/15V, R _g =10Ω,		121		
Eon	Turn-On Switching Loss	Inductive Load		0.23		
Eoff	Turn-Off Switching Loss			0.26		mJ
Ets	Total Switching Loss			0.49		
Q _G	Total Gate Charge			28		
Q_GE	Gate to emitter charge	arge $V_{CC} = 520V, I_C = 10A, V_{GE} = 0/15V$		2.3		nC
Q_{GC}	Gate to collector charge			18		1

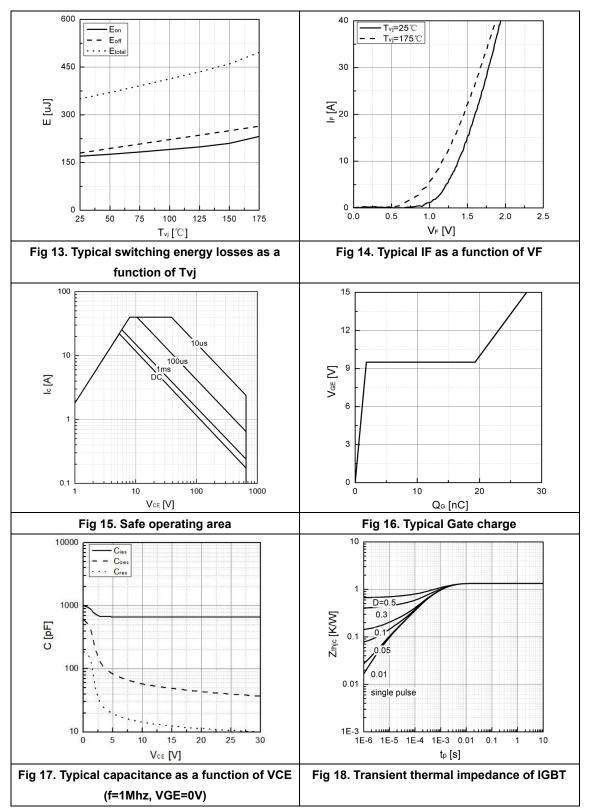


> Electrical Characteristics of Diode (Tvj=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VF	Diodo forward valtago	IF=10A, T _{vj} =25°C		1.4		V
VF	Diode forward voltage	IF=10A, T _{vj} =175°C		1.2		V
Trr	Diode reverse recovery time	VR=400V		57		ns
Irrm	Diode peak reverse recovery current	IF=10A diF/dt=750A/μs		12		А
Qrr	Diode reverse recovery charge	T _{vj} =25°C		411		nC
Trr	Diode reverse recovery time	VR=400V		121		ns
Irrm	Diode peak reverse recovery current	IF=10A diF/dt=750A/μs		14		А
Qrr	Diode reverse recovery charge	T _{vj} =175°C		740		nC

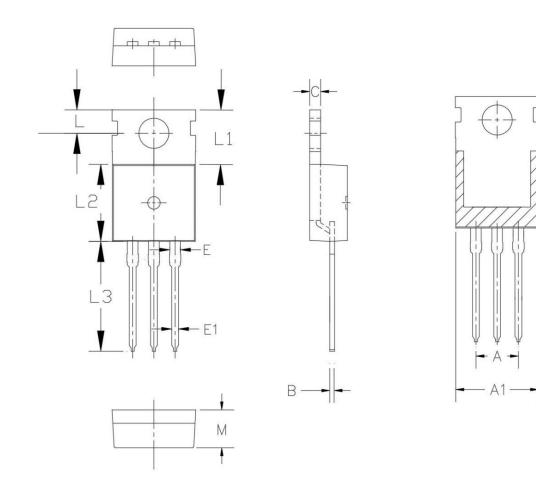


> Typical Performance Characteristics (T_{vj}=25°C unless otherwise noted)



> Typical Performance Characteristics (T_{vj}=25°C unless otherwise noted)

> Typical Performance Characteristics (Tvj=25°C unless otherwise noted)



SSC65TR10GT4

> Package Information

TO220

Symbol	MILL IMETER				
Symbol	Min	Nom	Max		
A		5.08 BSC			
A1	9.00	10.00	11.00		
В	0.33		0.65		
С	1.20		1.40		
E	1.17		1.37		
E1	0.60		1.10		
L	2.50		3.00		
L1	6.3	6.5	6.7		
L2	8.95		9.75		
L3	12.88		13.40		
М	4.30		4.70		

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.